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Introduction

Context of this research

> Applications:
» Offshore wind farms
» Underwater mining
» Underwater sensor fields

» Constraint:

P> No possibility to return to the
surface before the end of the
mission

» Cheaper sensors (swarms)

Autonomous Underwater Vehicles (AUV)

) used as data mules and for monitoring
— Problem to localise our robot
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Introduction

The localisation problem
> Aim:
P |ocate the robot offline to replace data on map
» Data available
» Behaviour of the robot (evolution function)
» Range-only measurements
» Completely unknown initial condition
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Modelling a robot Dynamic

Modelling a robot
The robot state is represented by a vector. For instance:

X1

X3

T2
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Modelling a robot Dynamica

Differential equation

» Behaviour modeled by the evolution function

x(t) = f(x(t), u(t)).
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Modelling a robot Dynamical systems

Differential equation

» Behaviour modeled by the evolution function
x(t) = f(x(t), u(t)).
» In the examples we will consider in this presentation, u(t) is known.

x(t) = f(x(1))
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Dynamical systems

Differential equation

» Behaviour modeled by the evolution function
x(t) = f(x(t), u(t)).
» In the examples we will consider in this presentation, u(t) is known.
x(t) = f(x(1))
» Finding solution of an Initial Value Problem (IVP)

{ x(t) = f(x(t)).te T

x(t =0)=x0 € R"
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Modelling a robot

Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function ® : T x & — & which follows the
properties below:
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Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function ® : T x & — & which follows the
properties below:

1. t € T will be the evolution parameter and T the time set;
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Modelling a robot Dynamical systems

Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function ® : T x & — & which follows the
properties below:

1. t € T will be the evolution parameter and T the time set;
2. S is the state space;
3. ®(0,.) is the identity function, i.e. ¥x € S, ®(0,x) =x ;
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Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function ® : T x & — & which follows the
properties below:

1. t € T will be the evolution parameter and T the time set;
2. S is the state space;

3. ®(0,.) is the identity function, i.e. ¥x € S, ®(0,x) =x ;
4. Foranyx € S, and t, 7 € T,d(t, d(T,x)) = &(t + 7, x).
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Dynamical systems

Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function ® : T x & — & which follows the
properties below:

1. t € T will be the evolution parameter and T the time set;
2. S is the state space;

3. ®(0,.) is the identity function, i.e. ¥x € S, ®(0,x) =x ;
4. Foranyx € S, and t, 7 € T,d(t, d(T,x)) = &(t + 7, x).

\4

We will focus on continuous time systems where T = R.

\4

An analytic expression of the flow function is rarely available
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Towards a new guaranteed integration method

J. DAMERS (L. Jaulin, S. Rohou)



wards a new guaranteed integration method

Why a new guaranteed integration method 7

pplied to gu



Towards a new guaranteed integration method Alrez ting tools

Why a new guaranteed integration method 7

» Need for guarantee as we are working with complex systems
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Already existing tools

Why a new guaranteed integration method 7

» Need for guarantee as we are working with complex systems

» Conventional tools can be quite slow when performing numerous integrations
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Already existing tools

Why a new guaranteed integration method 7

» Need for guarantee as we are working with complex systems
» Conventional tools can be quite slow when performing numerous integrations
» Conventional tools cannot deal with large initial conditions

2
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Towards a new guaranteed integration method Alrez ting tools

Guaranteed integration tools, state of the art

2 main methods:
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Guaranteed integration tools, state of the art
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Towards a new guaranteed integration method

Guaranteed integration tools, state of the art
2 main methods:

» Taylor expansion method

» Hermite-Obreshkov
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Already existing tools

Guaranteed integration tools, state of the art
2 main methods:

» Taylor expansion method

» Hermite-Obreshkov
Many solvers: CAPD, VNODE, COSY ...
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Already existing tools

Guaranteed integration tools, state of the art

2 main methods:

» Taylor expansion method

» Hermite-Obreshkov

Many solvers: CAPD, VNODE, COSY ...
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Hints from the vector field

Let us consider the system defined by:

1
A

x =f(x) =

Lie symmetries
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1
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P> A translation symmetry along Oxy
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Hints from the vector field

Let us consider the system defined by:

1
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Towards a new guaranteed integration method A simple example

Action of a diffeomorphisms

Definition (Action of diffeomorphisms)

Consider a state equation x = f(x), x € R" and g € diff(R"). We define the action e of

gonf as
dg -1 -1
gof:(&og )'(fog )
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wards a new guaranteed integration method

Action of a diffeomophisms

Example

Consider:

()

> and h(x)
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Towards a new guaranteed integration method A simple example

Lie symmetry

Definition (Lie symmetry)
g € diff(R") is a symmetry of f if the action e of g on f leaves f unchanged i.e

gef=*.

Lie symmetries are also called stabilisers.
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Translation symmetry

X1
X2

o @ f(x) =

dga

X1+ o
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Mirror-symmetry
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Mirror-symmetry
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Towards a new guaranteed integration method A s

Complete symmetry

X X1+
1 N 1T P1
X2 P2X2

9p :




A simple example

Complete symmetry

X1 X1 + p1
: —
% (Xz) < PaX2 )
Definition (Lie group of symmetry)
Consider a state equation x = f(x) and a manifold P. A Lie group G, of symmetries is a
family of diffeomorphisms g, € diff(R") parameterised by p € P such that:
» Gp is a Lie group with respect to the composition o,

> VpePgyef=f.
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Towards a new guaranteed integration method A simple example

Determine the flow function

Objective: Determine the flow function ®¢(x).

J. DAMERS (L. Jaulin, S. Rohou) tries applied to guar:



A simple mple

Determine the flow function

Objective: Determine the flow function ®¢(x).

We have:
> A reference trajectory denoted a(+)
(painted red)
» A transformation function
X1 X1+ p1
: —
9 X2 P2X2

T
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NNNNNNNNNNNNNY VA S S S S S p o
NNNNNNNNNNNNNN VA S S S S S p s
I N P R
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A simple mple

Determine the flow function

Objective: Determine the flow function ®¢(x).

T2
NV VY A} AEA N ERY
NINININNN . NN
NN N NNNN
We have: N
> A reference trajectory denoted a(+) NN N NN
NN 2 NN
(pa'nted red) NN NN NN N ~ ENENENEN
PO P ~ .sas
» A transformation function IIIIITyIis = PO
X1 X1+ p1 TIIIII0IIIz s R 1) |
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A simple mple

Determine the flow function

Objective: Determine the flow function ®¢(x).

)
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We have:
NN N N N N NN N N N NN
. NN Y (1) NN NN NN NN
> A reference trajectory denoted a(+) N N NN N N NN
NN RN NN
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A simple mple

Determine the flow function

Objective: Determine the flow function ®¢(x).

We have:
> A reference trajectory denoted a(+)
(painted red)

» A transformation function
X1 X1+ p1
: —
9 X2 P2X2

Therefore

®:(x) = gp 0 a(t)

CANNNNNNNNNNNN VA S S S S S s
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Towards a new guaranteed integration method A simple example

The transport function

To find the right value of p, we must solve

9p(a(0)) = b,

in order to express p using only a(0) and b.
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A simple example

The transport function

To find the right value of p, we must solve

9p(a(0)) = b,

in order to express p using only a(0) and b.

Using the previous example :

go(a(0)) =b = (al,,;fl) —b
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The transport function

To find the right value of p, we must solve
9p(a(0)) = b,
in order to express p using only a(0) and b.

Using the previous example :

go(a(0)) =b = ("”lpjafl) —b

We introduce a new tool, the transport function denoted h(x, a) such that:

p=h(ba)= (bl b al) .

a
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Towards a new guaranteed integration method A simple example

The transport function

Definition (Transport function)

Consider a transitive Lie group of symmetries Gy(i.e it only has one orbit). In this case,
there exists a function h : R” x R” — P such that h(x, a) corresponds to the
displacement p to be chosen so that the point a is moved to x by g, , which means:

gh(x,a)(a) =X
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Towards a new guaranteed integration method As

The flow function

> Reference:

a(t) € [a](1),a(0) = (2)
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Towards a new guaranteed integration method A simple example

The flow function

> Reference:

a(t) € [a](1),a(0) = (2)

Symmetry:

uy u1+ p1
: — '
g (“2> ( P2tz >

\4
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Towards a new guaranteed integration method A simple example

The flow function

> Reference:
a(t) € fl(e). a0) = (7
> Symmetry:

Uy u1+ p1
: — '
g (“2> ( P2tz >

» Transport function:

h(x,a) = (Xl X:Qal> ,

a
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A simple example

The flow function

> Reference:

_ (0 ®¢(x) =gp o a(t)
a(t) € al(0).200) = (7 g 040

> Symmetry: ar(t)
:"W"( (1) )

oo (1n) = () (20

» Transport function: Xo - ao(t

X1 — a1 t+x1
h = X , = _
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A simple example

The flow function

> Reference:

_ (0 ®¢(x) =gp o a(t)
a(t) € al(0).200) = (7 g 040

> Symmetry: ai(t)
:"W"( (1) )

oo (1n) = () (20

» Transport function: Xo - ao(t

X1 — a1 t+x1
h = X , = _

We finally have a analytic expression for the flow !
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A set inversion problem

With the flow function &, performing a guaranteed integration for an uncertain initial
condition is equivalent to solving a set inversion problem.

Consider a uncertain initial box [xo] for which we want to find the image set by ®;. We
want to find the set X; such that

Xe = ®Z¢([xo]).

R
[x, /
|

Py
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A set inversion problem

With the flow function &, performing a guaranteed integration for an uncertain initial
condition is equivalent to solving a set inversion problem.

Consider a uncertain initial box [xo] for which we want to find the image set by ®;. We
want to find the set X; such that

Xe = ®Z¢([xo]).
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Towards a new guaranteed integration method A simple example

Applying a SIVIA algorithm

> x = f(x) = <—1><2>
> [xo] = [0,1] ¥ [2,3]

00 10 20 30 40 50 6.0

Discrete sets computation (Lie 70 ms,
CAPD 300 ms)
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Towards a new guaranteed integration method A simple exa

Applying a SIVIA algorithm

> x = f(x) = <—1><2>
> [xo] = [0,1] ¥ [2,3]

x5

00 10 20 30 40 50 6.0

£
00 10 20 30 10 50 60

Discrete sets computation (Lie 70 ms,

CAPD 300 ms) Continous set computation (229 ms)
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Towards a new guaranteed integration method A simple example

Pros and limits of the method

Pros:

» Able to deal with large initial condition (no bloating effect)
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Towards a new guaranteed integration method A simple example

Pros and limits of the method

Pros:
» Able to deal with large initial condition (no bloating effect)

» |ess computation time (less steps of operations)
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Pros and limits of the method
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» Need for enough symmetries, method will not work for every systems
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A simple example

Pros and limits of the method

Pros:
> Able to deal with large initial condition (no bloating effect)
» |ess computation time (less steps of operations)
» Easily get an outer and inner approximation
Limits:
» Need for enough symmetries, method will not work for every systems

> Need for a reference

Julien Damers, Luc Jaulin, Simon Rohou. "Lie symmetries applied to interval
integration". Accepted in: Automatica 2022
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Solving the localisation problem for an unknown initial condition
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Solving the localisation problem for an unknown initial condition
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Solving the localisation problem for an unknown initial condition

Problem presentation

Hypotheses:
> 1 robot
» 4 beacons

L]
beacon 4

» Completely unknown inital condition
» Range only measurements

Objectives:

L]
beacon 2

> Estimate the initial condition
» Locate the robot
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The tank-like robot model

T2

Let us consider the system defined by:

u1(t) cos(x3)
x = f(x,u(t)) = | wvi(t)sin(x3)
Uz(t)

» General kinematic model

» Can be applied to a large group of
robots

In our example u(t) is known for all t
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Solving the localisation problem for an unknown initial conditi
Result




Conclusion
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Conclusion

Conclusion

» Notion of transport function
» Development of a new guaranteed integration method

» Application to localisation with an unknown initial condition
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Conclusion

» Notion of transport function
» Development of a new guaranteed integration method
> Application to localisation with an unknown initial condition
Prospects:
> Solve differential inclusions x € F(x, u)
» Handle both space and time displacement (sliding window)
» Apply symmetries in other context than interval analysis (particle filter)

» Compute the transport function automatically
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Conclusion

Thank you for your attention




Conclusi

Codac code

Tisting 5.1 Chiaracterising ¥ using the Lie integration method
// The uncertain nitial condition

B IntervalVector x_0({{0,1},12,3}});

. // The space to esplore for the set inversion

. IntervalVector m({{-0.1,6.5},{-0.2,3.531);

i double epsilon = 0.01; // define accuracy of paving

o // define transformation function

Function phi("x1","x2","e"," (xi+t;x2sexp(-£))");

u // Greate the general separator on phi_t with [z 0] as constraint
SepFudBud SepPhi (phi,x_0);

1 // Define the time for uhich we want to perform the integration
1 Interval t(-3,-3);

- // Greate the projected separator object

" SepProj sepProj (SepPhi,t,epsilon);

= // Perform the set inversion algorithm

= pavings = (m,sepProj,epsilon) ;
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