Lie symmetries applied to guaranteed integration: application to mobile robotics localisation

Julien DAMERS

L. Jaulin, S. Rohou

Hanover, 20th July 2022

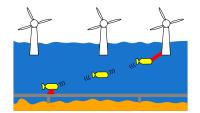
Section 1

Introduction

Context of this research

Applications:

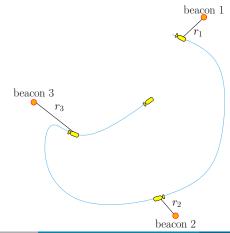
- Offshore wind farms
- Underwater mining
- Underwater sensor fields
- Constraint:
 - No possibility to return to the surface before the end of the mission
 - Cheaper sensors (swarms)
- \longrightarrow Problem to localise our robot



Autonomous Underwater Vehicles (AUV) used as data mules and for monitoring

The localisation problem

- Aim:
 - Locate the robot offline to replace data on map
- Data available
 - Behaviour of the robot (evolution function)
 - Range-only measurements
 - Completely unknown initial condition



Outline

- 2 Modelling a robot
- Towards a new guaranteed integration method
- 4 Solving the localisation problem for an unknown initial condition
- 5 Conclusion

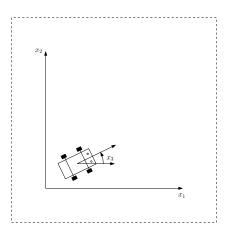
Section 2

Modelling a robot

Modelling a robot

The robot state is represented by a vector. For instance:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$



Differential equation

Behaviour modeled by the evolution function

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)).$

Differential equation

Behaviour modeled by the evolution function

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)).$$

ln the examples we will consider in this presentation, $\mathbf{u}(t)$ is known.

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$

Differential equation

Behaviour modeled by the evolution function

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)).$$

ln the examples we will consider in this presentation, $\mathbf{u}(t)$ is known.

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$$

Finding solution of an Initial Value Problem (IVP)

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)), t \in T \\ \mathbf{x}(t=0) = \mathbf{x}_0 \in \mathbb{R}^n \end{cases}$$

Definition (Flow function)

A dynamical system can be represented by a function $\Phi : T \times S \to S$ which follows the properties below:

Definition (Flow function)

A dynamical system can be represented by a function $\Phi : T \times S \to S$ which follows the properties below:

1. $t \in T$ will be the evolution parameter and T the time set;

Definition (Flow function)

A dynamical system can be represented by a function $\Phi:\mathcal{T}\times\mathcal{S}\to\mathcal{S}$ which follows the properties below:

- 1. $t \in T$ will be the evolution parameter and T the time set;
- 2. \mathcal{S} is the state space;

Definition (Flow function)

A dynamical system can be represented by a function $\Phi: T \times S \to S$ which follows the properties below:

- 1. $t \in T$ will be the evolution parameter and T the time set;
- 2. \mathcal{S} is the state space;
- 3. $\Phi(0, .)$ is the identity function, *i.e.* $\forall \mathbf{x} \in S, \Phi(0, \mathbf{x}) = \mathbf{x}$;

Definition (Flow function)

A dynamical system can be represented by a function $\Phi : T \times S \to S$ which follows the properties below:

- 1. $t \in T$ will be the evolution parameter and T the time set;
- 2. \mathcal{S} is the state space;
- 3. $\Phi(0, .)$ is the identity function, *i.e.* $\forall x \in S$, $\Phi(0, x) = x$;
- 4. For any $\mathbf{x} \in S$, and $t, \tau \in T$, $\Phi(t, \Phi(\tau, \mathbf{x})) = \Phi(t + \tau, \mathbf{x})$.

Definition (Flow function)

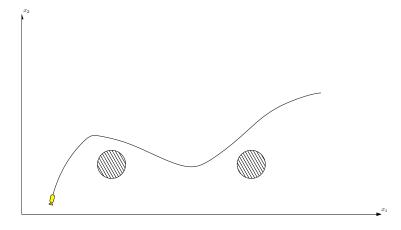
A dynamical system can be represented by a function $\Phi : T \times S \to S$ which follows the properties below:

- 1. $t \in T$ will be the evolution parameter and T the time set;
- 2. \mathcal{S} is the state space;
- 3. $\Phi(0, .)$ is the identity function, *i.e.* $\forall x \in S$, $\Phi(0, x) = x$;
- 4. For any $\mathbf{x} \in S$, and $t, \tau \in T$, $\Phi(t, \Phi(\tau, \mathbf{x})) = \Phi(t + \tau, \mathbf{x})$.
- We will focus on continuous time systems where $T = \mathbb{R}$.
- An analytic expression of the flow function is rarely available

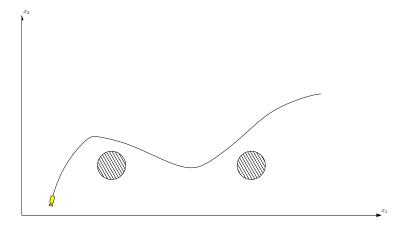
Section 3

Towards a new guaranteed integration method

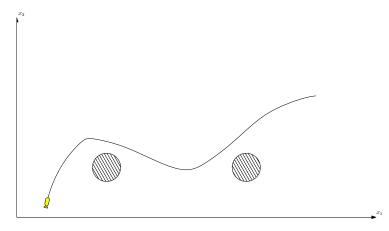
Need for guarantee as we are working with complex systems



- Need for guarantee as we are working with complex systems
- Conventional tools can be quite slow when performing numerous integrations



- ▶ Need for guarantee as we are working with complex systems
- Conventional tools can be quite slow when performing numerous integrations
- Conventional tools cannot deal with large initial conditions

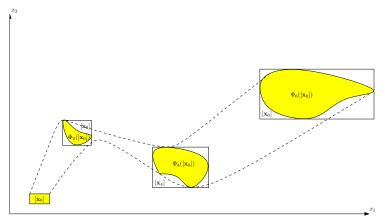


2 main methods:

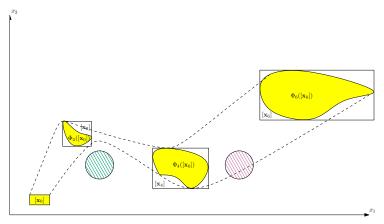
- 2 main methods:
 - Taylor expansion method

- 2 main methods:
 - Taylor expansion method
 - Hermite-Obreshkov

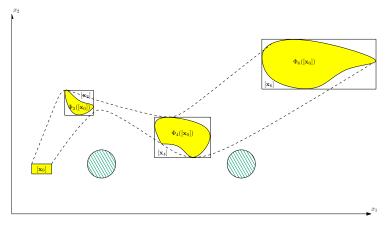
- 2 main methods:
 - Taylor expansion method
 - Hermite-Obreshkov
- Many solvers: CAPD, VNODE, COSY ...

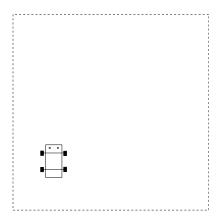


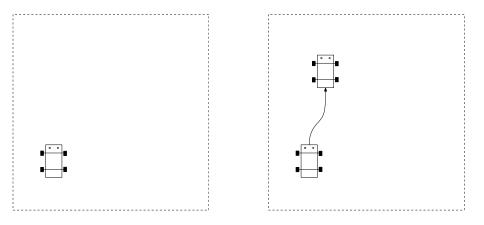
- 2 main methods:
 - Taylor expansion method
 - Hermite-Obreshkov
- Many solvers: CAPD, VNODE, COSY ...

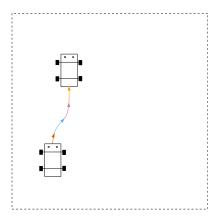


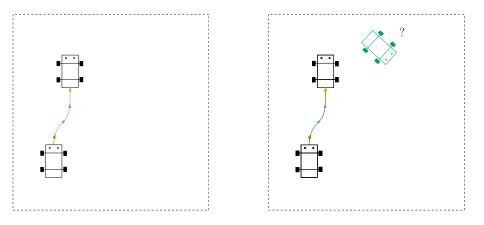
- 2 main methods:
 - Taylor expansion method
 - Hermite-Obreshkov
- Many solvers: CAPD, VNODE, COSY ...

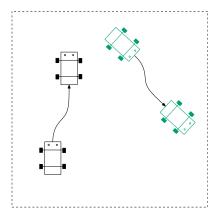


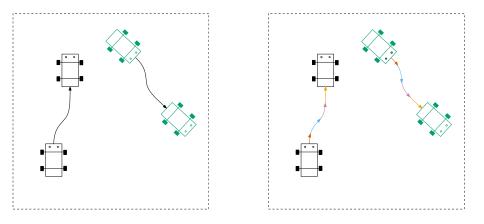


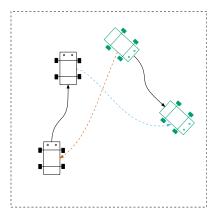


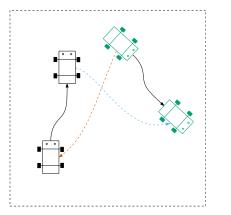


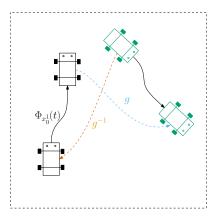








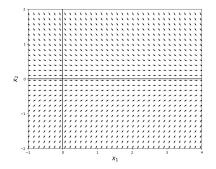




Hints from the vector field

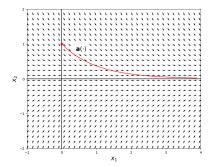
Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$



Let us consider the system defined by:

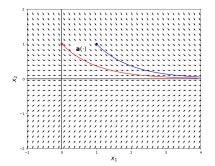
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$



Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

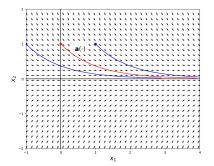
► A translation symmetry along *Ox*₁



Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

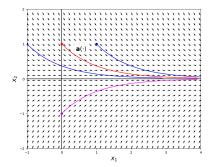
► A translation symmetry along *Ox*₁



Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

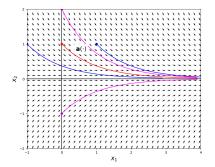
- A translation symmetry along Ox_1
- A mirror symmetry over Ox_1



Let us consider the system defined by:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

- A translation symmetry along Ox_1
- A mirror symmetry over Ox_1



Action of a diffeomorphisms

Definition (Action of diffeomorphisms)

Consider a state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{g} \in \text{diff}(\mathbb{R}^n)$. We define the action \bullet of \mathbf{g} on \mathbf{f} as

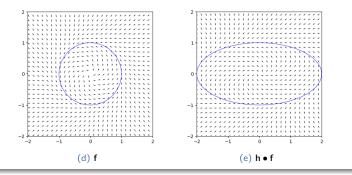
$$\mathbf{g} \bullet \mathbf{f} = \left(\frac{d\mathbf{g}}{d\mathbf{x}} \circ \mathbf{g}^{-1}\right) \cdot \left(\mathbf{f} \circ \mathbf{g}^{-1}\right)$$

Action of a diffeomophisms

Example

Consider:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} -x_1^3 - x_1x_2^2 + x_1 - x_2 \\ -x_2^3 - x_1^2x_2 + x_1 + x_2 \end{pmatrix} \text{ and } \mathbf{h}(\mathbf{x}) = \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix}$$

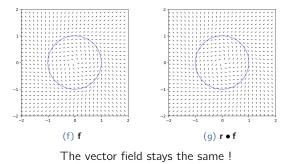


Action of a diffeomophisms

Example

Consider the previous system and the following function:

$$\mathbf{r}(\mathbf{x}) = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right) x_1 - \sin\left(\frac{\pi}{4}\right) x_2 \\ \cos\left(\frac{\pi}{4}\right) x_2 + \sin\left(\frac{\pi}{4}\right) x_1 \end{pmatrix}$$



Lie symmetry

Definition (Lie symmetry)

 $g \in diff(\mathbb{R}^n)$ is a symmetry of f if the action \bullet of g on f leaves f unchanged i.e

 $\mathbf{g} \bullet \mathbf{f} = \mathbf{f}.$

Lie symmetries are also called **stabilisers**.

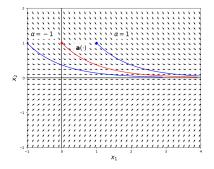
Translation symmetry

$$\mathbf{g}_{\boldsymbol{\alpha}}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + \boldsymbol{\alpha}\\ x_2 \end{pmatrix}$$

Translation symmetry

$$\mathbf{g}_{\boldsymbol{\alpha}}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + \boldsymbol{\alpha} \\ x_2 \end{pmatrix}$$

$$\begin{aligned} \mathbf{g}_{\alpha} \bullet \mathbf{f}(\mathbf{x}) &= \left(\frac{d\mathbf{g}_{\alpha}}{d\mathbf{x}} \circ \mathbf{g}_{\alpha}^{-1}\right) \cdot \left(\mathbf{f} \circ \mathbf{g}_{\alpha}^{-1}\right)(\mathbf{x}) \\ &= \left(\frac{d\mathbf{g}_{\alpha}}{d\mathbf{x}} \cdot \mathbf{f}\right) \circ \mathbf{g}_{\alpha}^{-1}(\mathbf{x}) \\ &= \left(\left(\begin{array}{cc}1 & 0\\0 & 1\end{array}\right) \cdot \left(\begin{array}{c}1\\-x_2\end{array}\right)\right) \circ \left(\begin{array}{c}x_1 - \alpha\\x_2\end{array}\right) \\ &= \left(\begin{array}{c}1\\-x_2\end{array}\right) \\ &= \mathbf{f}(\mathbf{x}) \end{aligned}$$



Mirror-symmetry

$$\mathbf{g}_{\boldsymbol{\beta}}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ \boldsymbol{\beta} x_2 \end{pmatrix}$$

Mirror-symmetry

g

$$\mathbf{g}_{\beta} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ \beta x_2 \end{pmatrix}$$

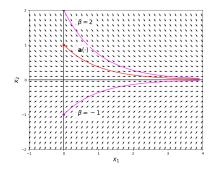
$$\mathbf{g} \bullet \mathbf{f}(\mathbf{x}) = \left(\frac{d\mathbf{g}_{\beta}}{d\mathbf{x}} \circ \mathbf{g}_{\beta}^{-1} \right) \cdot \left(\mathbf{f} \circ \mathbf{g}_{\beta}^{-1} \right) (\mathbf{x})$$

$$= \left(\frac{d\mathbf{g}_{\beta}}{d\mathbf{x}} \cdot \mathbf{f} \right) \circ \mathbf{g}_{\beta}^{-1} (\mathbf{x})$$

$$= \left(\begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -x_2 \end{pmatrix} \right) \circ \begin{pmatrix} x_1 \\ \frac{x_2}{\beta} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

$$= \mathbf{f}(\mathbf{x})$$



Complete symmetry

$$\mathbf{g}_{\mathbf{P}}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + \mathbf{p}_1 \\ \mathbf{p}_2 x_2 \end{pmatrix}$$

Complete symmetry

$$\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + \mathbf{p}_1 \\ \mathbf{p}_2 x_2 \end{pmatrix}$$

Definition (Lie group of symmetry)

Consider a state equation $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ and a manifold \mathbb{P} . A Lie group $G_{\mathbf{p}}$ of symmetries is a family of diffeomorphisms $\mathbf{g}_{\mathbf{p}} \in \text{diff}(\mathbb{R}^n)$ parameterised by $\mathbf{p} \in \mathbb{P}$ such that:

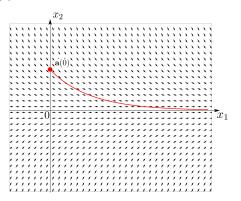
- G_p is a Lie group with respect to the composition \circ ,
- $\blacktriangleright \ \forall p \in \mathbb{P}, g_p \bullet f = f.$

Objective: Determine the flow function $\Phi_t(\mathbf{x})$.

Objective: Determine the flow function $\Phi_t(\mathbf{x})$.

We have:

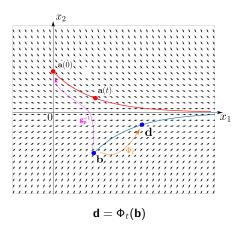
- A reference trajectory denoted a(·) (painted red)
- A transformation function $\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + p_1\\ p_2 x_2 \end{pmatrix}$



Objective: Determine the flow function $\Phi_t(\mathbf{x})$.

We have:

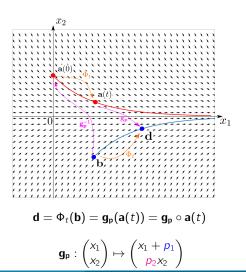
- A reference trajectory denoted a(·) (painted red)
- A transformation function $\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + p_1\\ p_2 x_2 \end{pmatrix}$



Objective: Determine the flow function $\Phi_t(\mathbf{x})$.

We have:

- A reference trajectory denoted a(·) (painted red)
- A transformation function $\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + p_1\\ p_2 x_2 \end{pmatrix}$



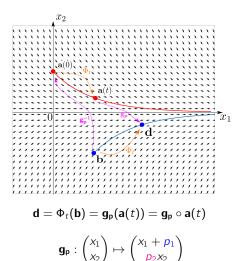
Objective: Determine the flow function $\Phi_t(\mathbf{x})$.

We have:

- A reference trajectory denoted a(·) (painted red)
- A transformation function $\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + p_1\\ p_2 x_2 \end{pmatrix}$

Therefore

$$\Phi_t(x) = \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t)$$



To find the right value of **p**, we must solve

 $\mathbf{g}_{\mathbf{p}}(\mathbf{a}(0)) = \mathbf{b}_{\mathbf{x}}$

in order to express \mathbf{p} using only $\mathbf{a}(0)$ and \mathbf{b} .

To find the right value of **p**, we must solve

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}(0)) = \mathbf{b},$$

in order to express \mathbf{p} using only $\mathbf{a}(0)$ and \mathbf{b} .

Using the previous example :

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}(0)) = \mathbf{b} \iff \begin{pmatrix} a_1 + p_1 \\ p_2 a_2 \end{pmatrix} = \mathbf{b}$$
$$\iff \mathbf{p} = \begin{pmatrix} b_1 - a_1 \\ \frac{b_2}{a_2} \end{pmatrix}$$

To find the right value of **p**, we must solve

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}(0)) = \mathbf{b},$$

in order to express \mathbf{p} using only $\mathbf{a}(0)$ and \mathbf{b} .

Using the previous example :

$$\mathbf{g}_{\mathbf{p}}(\mathbf{a}(0)) = \mathbf{b} \iff \begin{pmatrix} a_1 + p_1 \\ p_2 a_2 \end{pmatrix} = \mathbf{b}$$
$$\iff \mathbf{p} = \begin{pmatrix} b_1 - a_1 \\ \frac{b_2}{a_2} \end{pmatrix}$$

We introduce a new tool, the **transport function** denoted h(x, a) such that:

$$\mathbf{p} = \mathbf{h}(\mathbf{b}, \mathbf{a}) = \begin{pmatrix} b_1 - a_1 \\ \frac{b_2}{a_2} \end{pmatrix}.$$

Definition (Transport function)

Consider a transitive Lie group of symmetries $G_{\mathbf{p}}$ (i.e it only has one orbit). In this case, there exists a function $\mathbf{h} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{P}$ such that $\mathbf{h}(\mathbf{x}, \mathbf{a})$ corresponds to the displacement \mathbf{p} to be chosen so that the point \mathbf{a} is moved to \mathbf{x} by $\mathbf{g}_{\mathbf{p}}$, which means:

 $g_{h(\boldsymbol{x},\boldsymbol{a})}(\boldsymbol{a}) = \boldsymbol{x}$

Reference:

$$\mathbf{a}(t)\in [\mathbf{a}](t)$$
, $\mathbf{a}(0)=egin{pmatrix}0\1\end{pmatrix}$

Reference:

$$\mathbf{a}(t) \in [\mathbf{a}](t), \mathbf{a}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Symmetry:

$$\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} u_1\\ u_2 \end{pmatrix} \mapsto \begin{pmatrix} u_1+p_1\\ p_2u_2 \end{pmatrix}$$
,

Reference:

$$\mathbf{a}(t) \in [\mathbf{a}](t), \mathbf{a}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Symmetry:

$$\mathbf{g}_{\mathbf{P}}: \begin{pmatrix} u_1\\u_2 \end{pmatrix} \mapsto \begin{pmatrix} u_1+p_1\\p_2u_2 \end{pmatrix}$$
,

Transport function:

$$\mathbf{h}(\mathbf{x},\mathbf{a}) = \begin{pmatrix} x_1 - a_1 \\ \frac{x_2}{a_2} \end{pmatrix},$$

Reference:

$$\mathbf{a}(t) \in [\mathbf{a}](t), \mathbf{a}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Symmetry:

$$\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} u_1\\u_2 \end{pmatrix} \mapsto \begin{pmatrix} u_1+p_1\\p_2u_2 \end{pmatrix}$$
,

Transport function:

$$\mathbf{h}(\mathbf{x},\mathbf{a}) = \begin{pmatrix} x_1 - a_1 \\ \frac{x_2}{a_2} \end{pmatrix},$$

$$\Phi_t(\mathbf{x}) = \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t)$$

= $\mathbf{g}_{\mathbf{h}(\mathbf{x}, \mathbf{a}_0)} \circ \mathbf{a}(t)$
= $\mathbf{g}_{x_1, x_2} \circ \begin{pmatrix} a_1(t) \\ a_2(t) \end{pmatrix}$
= $\begin{pmatrix} a_1(t) + x_1 \\ x_2 \cdot a_2(t) \end{pmatrix}$
= $\begin{pmatrix} t + x_1 \\ x_2 \cdot e^{-t} \end{pmatrix}$

Reference:

$$\mathbf{a}(t) \in [\mathbf{a}](t), \mathbf{a}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Symmetry:

$$\mathbf{g}_{\mathbf{p}}: \begin{pmatrix} u_1\\u_2 \end{pmatrix} \mapsto \begin{pmatrix} u_1+p_1\\p_2u_2 \end{pmatrix}$$
 ,

Transport function:

$$\mathbf{h}(\mathbf{x},\mathbf{a}) = \begin{pmatrix} x_1 - \partial_1 \\ \frac{x_2}{\partial_2} \end{pmatrix},$$

$$\begin{aligned} \mathbf{f}_{t}(\mathbf{x}) &= \mathbf{g}_{\mathbf{p}} \circ \mathbf{a}(t) \\ &= \mathbf{g}_{\mathsf{h}(\mathbf{x}, \mathbf{a}_{0})} \circ \mathbf{a}(t) \\ &= \mathbf{g}_{x_{1}, x_{2}} \circ \begin{pmatrix} a_{1}(t) \\ a_{2}(t) \end{pmatrix} \\ &= \begin{pmatrix} a_{1}(t) + x_{1} \\ x_{2} \cdot a_{2}(t) \end{pmatrix} \\ &= \begin{pmatrix} t + x_{1} \\ x_{2} \cdot e^{-t} \end{pmatrix} \end{aligned}$$

Φ

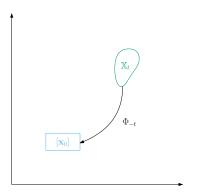
We finally have a analytic expression for the flow !

A set inversion problem

With the flow function Φ_t , performing a guaranteed integration for an uncertain initial condition is equivalent to solving a set inversion problem.

Consider a uncertain initial box $[x_0]$ for which we want to find the image set by Φ_t . We want to find the set X_t such that

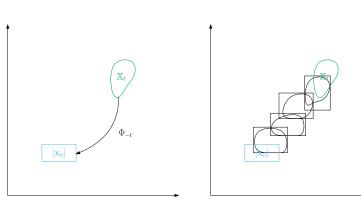
$$\mathbb{X}_t = \Phi_{-t}^{-1}([\mathbf{x}_0]).$$



A set inversion problem

With the flow function Φ_t , performing a guaranteed integration for an uncertain initial condition is equivalent to solving a set inversion problem.

Consider a uncertain initial box $[x_0]$ for which we want to find the image set by Φ_t . We want to find the set X_t such that

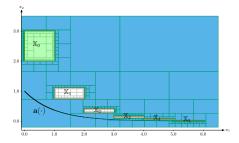


$$\mathbb{X}_t = \Phi_{-t}^{-1}([\mathbf{x}_0])$$

Applying a SIVIA algorithm

•
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

• $[\mathbf{x}_0] = [0, 1] \times [2, 3]$

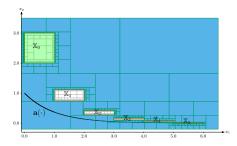


Discrete sets computation (Lie 70 ms, CAPD 300 ms)

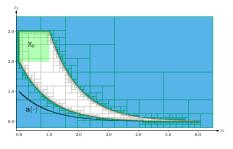
Applying a SIVIA algorithm

•
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) = \begin{pmatrix} 1 \\ -x_2 \end{pmatrix}$$

• $[\mathbf{x}_0] = [0, 1] \times [2, 3]$



Discrete sets computation (Lie 70 ms, CAPD 300 ms)



Continous set computation (229 ms)

Pros and limits of the method

Pros:

Pros and limits of the method

Pros:

Able to deal with large initial condition (no bloating effect)

Pros and limits of the method

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)
- Easily get an outer and inner approximation

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)
- Easily get an outer **and** inner approximation

Limits:

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)
- Easily get an outer **and** inner approximation

Limits:

▶ Need for enough symmetries, method will not work for every systems

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)
- Easily get an outer **and** inner approximation

Limits:

- ▶ Need for enough symmetries, method will not work for every systems
- Need for a reference

Pros:

- Able to deal with large initial condition (no bloating effect)
- Less computation time (less steps of operations)
- Easily get an outer **and** inner approximation

Limits:

- ▶ Need for enough symmetries, method will not work for every systems
- Need for a reference

Julien Damers, Luc Jaulin, Simon Rohou. "Lie symmetries applied to interval integration". Accepted in: Automatica 2022

Section 4

Solving the localisation problem for an unknown initial condition

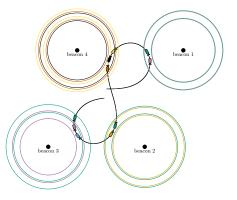
Problem presentation

Hypotheses:

- 1 robot
- 4 beacons
- Completely unknown inital condition
- Range only measurements

Objectives:

- Estimate the initial condition
- Locate the robot



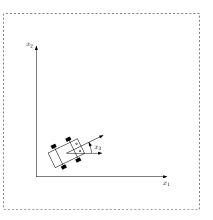
The tank-like robot model

Let us consider the system defined by:

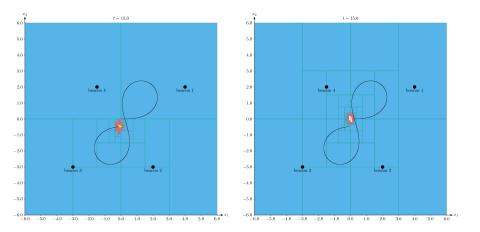
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}(t)) = \begin{pmatrix} u_1(t) \cos(x_3) \\ u_1(t) \sin(x_3) \\ u_2(t) \end{pmatrix}$$

- General kinematic model
- Can be applied to a large group of robots

In our example u(t) is known for all t



Result



Section 5

Conclusion

Conclusion

- Notion of transport function
- Development of a new guaranteed integration method
- Application to localisation with an unknown initial condition

Conclusion

- Notion of transport function
- Development of a new guaranteed integration method
- Application to localisation with an unknown initial condition

Prospects:

- Solve differential inclusions $\dot{\mathbf{x}} \in \mathbf{F}(\mathbf{x}, \mathbf{u})$
- ► Handle both space and time displacement (sliding window)
- Apply symmetries in other context than interval analysis (particle filter)
- Compute the transport function automatically

Thank you for your attention

Conclusio

Codac code

// The uncertain initial condition
<pre>IntervalVector x_0({{0,1},{2,3}});</pre>
// The space to explore for the set inversion
IntervalVector m({{-0.1,6.5}, {-0.2,3.5}});
double epsilon = 0.01; // define accuracy of paving
<pre>// define transformation function</pre>
Function phi("x1","x2","t","(x1+t;x2*exp(-t))");
// Create the general separator on phi t with [z 0] as constraint
SepFwdBwd SepPhi(phi,x_0);
// Define the time for which we want to perform the integration
Interval t(-3,-3);
// Create the projected separator object
SepProj sepProj(SepPhi,t,epsilon);
// Perform the set inversion algorithm
vector <vector<intervalvector>> pavings = sivia(m,sepProj,epsilon);</vector<intervalvector>

