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Introduction

Context of this research

I Applications:
I Offshore wind farms
I Underwater mining
I Underwater sensor fields

I Constraint:
I No possibility to return to the

surface before the end of the
mission

I Cheaper sensors (swarms)

−→ Problem to localise our robot

Autonomous Underwater Vehicles (AUV)
used as data mules and for monitoring
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Introduction

The localisation problem
I Aim:

I Locate the robot offline to replace data on map
I Data available

I Behaviour of the robot (evolution function)
I Range-only measurements
I Completely unknown initial condition

beacon 1

beacon 2

beacon 3

r1

r2

r3
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Modelling a robot

Section 2

Modelling a robot
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Modelling a robot Dynamical systems

Modelling a robot
The robot state is represented by a vector. For instance:

x =

x1
x2
x3



x3

x1

x2
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Modelling a robot Dynamical systems

Differential equation

I Behaviour modeled by the evolution function

ẋ(t) = f(x(t), u(t)).

I In the examples we will consider in this presentation, u(t) is known.

ẋ(t) = f(x(t))

I Finding solution of an Initial Value Problem (IVP){
ẋ(t) = f(x(t)), t ∈ T
x(t = 0) = x0 ∈ Rn
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Modelling a robot Dynamical systems

Dynamical systems

Definition (Flow function)

A dynamical system can be represented by a function Φ : T × S → S which follows the
properties below:

1. t ∈ T will be the evolution parameter and T the time set;

2. S is the state space;

3. Φ(0, .) is the identity function, i.e. ∀x ∈ S,Φ(0, x) = x ;

4. For any x ∈ S, and t, τ ∈ T ,Φ(t,Φ(τ, x)) = Φ(t + τ, x).

I We will focus on continuous time systems where T = R.
I An analytic expression of the flow function is rarely available
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Towards a new guaranteed integration method

Section 3

Towards a new guaranteed integration method
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Towards a new guaranteed integration method Already existing tools

Why a new guaranteed integration method ?

I Need for guarantee as we are working with complex systems
I Conventional tools can be quite slow when performing numerous integrations
I Conventional tools cannot deal with large initial conditions

x2

x1
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Towards a new guaranteed integration method Already existing tools

Guaranteed integration tools, state of the art

2 main methods:

I Taylor expansion method
I Hermite-Obreshkov

Many solvers: CAPD, VNODE, COSY ...

x2

x1
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[x0]

[x2]

[x4]

[x6]

x2

x1

Φ2([x0])
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Towards a new guaranteed integration method Principle

Principle
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Towards a new guaranteed integration method Principle

Principle

g−1

g

Φx10
(t)
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Towards a new guaranteed integration method A simple example

Hints from the vector field

Let us consider the system defined by:

ẋ = f(x) =

(
1
−x2

)

I A translation symmetry along Ox1
I A mirror symmetry over Ox1
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ẋ = f(x) =

(
1
−x2

)

I A translation symmetry along Ox1
I A mirror symmetry over Ox1

J. DAMERS (L. Jaulin, S. Rohou) Lie symmetries applied to guaranteed integration 20/07/22 14 / 35



Towards a new guaranteed integration method A simple example

Hints from the vector field

Let us consider the system defined by:
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Towards a new guaranteed integration method A simple example

Action of a diffeomorphisms

Definition (Action of diffeomorphisms)

Consider a state equation ẋ = f(x), x ∈ Rn and g ∈ diff(Rn). We define the action • of
g on f as

g • f =

(
dg
dx
◦ g−1

)
·
(
f ◦ g−1

)
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Towards a new guaranteed integration method A simple example

Action of a diffeomophisms

Example

Consider:

ẋ = f(x) =

(
−x3

1 − x1x2
2 + x1 − x2

−x3
2 − x2

1 x2 + x1 + x2

)
and h(x) =

(
2x1
x2

)

(d) f (e) h • f
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Towards a new guaranteed integration method A simple example

Action of a diffeomophisms

Example

Consider the previous system and the following function:

r(x) =

(
cos
(
π
4

)
x1 − sin

(
π
4

)
x2

cos
(
π
4

)
x2 + sin

(
π
4

)
x1

)

(f) f (g) r • f

The vector field stays the same !
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Towards a new guaranteed integration method A simple example

Lie symmetry

Definition (Lie symmetry)

g ∈ diff(Rn) is a symmetry of f if the action • of g on f leaves f unchanged i.e

g • f = f.

Lie symmetries are also called stabilisers.
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Towards a new guaranteed integration method A simple example

Translation symmetry

gα :

(
x1
x2

)
7→
(

x1 + α

x2

)

gα • f(x) =
(

dgα
dx
◦ g−1α

)
·
(
f ◦ g−1α

)
(x)

=

(
dgα
dx
· f
)
◦ g−1α (x)

=

((
1 0
0 1

)
·
(

1
−x2

))
◦
(

x1 − α
x2

)
=

(
1
−x2

)
= f(x)
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Towards a new guaranteed integration method A simple example

Mirror-symmetry

gβ :

(
x1
x2

)
7→
(

x1
βx2

)

gβ • f(x) =
(

dgβ
dx
◦ g−1β

)
·
(
f ◦ g−1β

)
(x)

=

(
dgβ
dx
· f
)
◦ g−1β (x)

=

((
1 0
0 β

)
·
(

1
−x2

))
◦
(

x1
x2
β

)
=

(
1
−x2

)
= f(x)
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Towards a new guaranteed integration method A simple example

Complete symmetry

gp :

(
x1
x2

)
7→
(

x1 + p1

p2x2

)

Definition (Lie group of symmetry)

Consider a state equation ẋ = f(x) and a manifold P. A Lie group Gp of symmetries is a
family of diffeomorphisms gp ∈ diff(Rn) parameterised by p ∈ P such that:
I Gp is a Lie group with respect to the composition ◦,
I ∀p ∈ P, gp • f = f.
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Towards a new guaranteed integration method A simple example

Determine the flow function

Objective: Determine the flow function Φt(x).

We have:
I A reference trajectory denoted a(·)

(painted red)
I A transformation function

gp :

(
x1
x2

)
7→
(

x1 + p1

p2x2

)

Therefore

Φt(x) = gp ◦ a(t)

gp :

(
x1
x2

)
7→
(

x1 + p1

p2x2

)
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Towards a new guaranteed integration method A simple example

The transport function

To find the right value of p, we must solve

gp(a(0)) = b,

in order to express p using only a(0) and b.

Using the previous example :

gp(a(0)) = b ⇐⇒
(

a1 + p1

p2a2

)
= b

⇐⇒ p =

(
b1 − a1

b2
a2

)

We introduce a new tool, the transport function denoted h(x, a) such that:

p = h(b, a) =

(
b1 − a1

b2
a2

)
.
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Towards a new guaranteed integration method A simple example

The transport function

Definition (Transport function)

Consider a transitive Lie group of symmetries Gp(i.e it only has one orbit). In this case,
there exists a function h : Rn × Rn → P such that h(x, a) corresponds to the
displacement p to be chosen so that the point a is moved to x by gp , which means:

gh(x,a)(a) = x

.
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Towards a new guaranteed integration method A simple example

The flow function

I Reference:

a(t) ∈ [a](t), a(0) =

(
0
1

)

I Symmetry:

gp :

(
u1
u2

)
7→
(

u1 + p1
p2u2

)
,

I Transport function:

h(x, a) =

(
x1 − a1

x2
a2

)
,

Φt(x) = gp ◦ a(t)

= gh(x,a0) ◦ a(t)

= gx1,x2 ◦
(

a1(t)
a2(t)

)
=

(
a1(t) + x1
x2 · a2(t)

)
=

(
t + x1
x2 · e−t

)

We finally have a analytic expression for the flow !
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Towards a new guaranteed integration method A simple example

A set inversion problem

With the flow function Φt , performing a guaranteed integration for an uncertain initial
condition is equivalent to solving a set inversion problem.
Consider a uncertain initial box [x0] for which we want to find the image set by Φt . We
want to find the set Xt such that

Xt = Φ−1−t ([x0]).

[x0]

Xt

Φ−t

[x0]

Xt
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Towards a new guaranteed integration method A simple example

Applying a SIVIA algorithm

I ẋ = f(x) =

(
1
−x2

)
I [x0] = [0, 1]× [2, 3]

X0

X1

X2
X3 X4 X5

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0

a(·)

Discrete sets computation (Lie 70 ms,
CAPD 300 ms)
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Applying a SIVIA algorithm

I ẋ = f(x) =

(
1
−x2

)
I [x0] = [0, 1]× [2, 3]

X0

X1

X2
X3 X4 X5

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0

a(·)

Discrete sets computation (Lie 70 ms,
CAPD 300 ms)

X0

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0

a(·)

Continous set computation (229 ms)
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Towards a new guaranteed integration method A simple example

Pros and limits of the method

Pros:

I Able to deal with large initial condition (no bloating effect)
I Less computation time (less steps of operations)
I Easily get an outer and inner approximation

I Need for enough symmetries, method will not work for every systems
I Need for a reference

Julien Damers, Luc Jaulin, Simon Rohou. "Lie symmetries applied to interval
integration". Accepted in: Automatica 2022
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Solving the localisation problem for an unknown initial condition

Section 4

Solving the localisation problem for an unknown initial condition
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Solving the localisation problem for an unknown initial condition

Problem presentation

Hypotheses:
I 1 robot
I 4 beacons
I Completely unknown inital condition
I Range only measurements

Objectives:
I Estimate the initial condition
I Locate the robot

beacon 1

beacon 2beacon 3

beacon 4
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Solving the localisation problem for an unknown initial condition

The tank-like robot model

Let us consider the system defined by:

ẋ = f(x, u(t)) =

u1(t) cos(x3)
u1(t) sin(x3)

u2(t)


I General kinematic model
I Can be applied to a large group of

robots

In our example u(t) is known for all t

x3

x1

x2
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Solving the localisation problem for an unknown initial condition

Result
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Conclusion

Section 5

Conclusion
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Conclusion

Conclusion

I Notion of transport function
I Development of a new guaranteed integration method
I Application to localisation with an unknown initial condition

Prospects:
I Solve differential inclusions ẋ ∈ F(x, u)

I Handle both space and time displacement (sliding window)
I Apply symmetries in other context than interval analysis (particle filter)
I Compute the transport function automatically
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Conclusion

Thank you for your attention
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Conclusion

Codac code

X3

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0
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