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Robotics context

facing trajectory and path planning problems
controller validation
reaction to the environment in simulation

⇒ Need for a guaranteed integration tool, possibly lightweight
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Current tools

In the domain of interval analysis tools have already been developed to
perform guaranteed integration such as CAPD [3] or DynIbex [2]. These
tools are based on conventional integration schemes (Runge-Kutta ...) to
perform the calculation of the trajectory step by step.
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What is a Lie Group ? I

Definition
A Lie Group is a smooth differentiable manifold [1]
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What is a Lie Group ? II

Examples of Lie groups:

Figure 1: Examples of lie groups
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What is a Lie Group ? III

Why are they Lie Groups:

(a) unit circle (b) the torus

Figure 2: Examples of lie groups 2
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What is a Lie Group ? IV

Figure 3: Torus and one robot position
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What is a Lie Group ? V

Figure 4: Torus and two robot positions
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What is a Lie Group ? VI

Figure 5: Trajectory on a Lie group

The transformations from one element to another are C∞ i.e. the manifold
is smooth
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Action I

Definition
Given a state equation ẋ = f(x) where x ∈ Rn and g : Rn → Rn is a
diffeomorphism, the action (noted •) by g on f is defined by

g • f =
(
dg
dx
◦ g−1

)
∗
(
f ◦ g−1) (1)
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Action II

Let’s take the following system:

{
ẋ1 = −x3

1 − x1x
2
2 + x1 − x2

ẋ2 = −x3
2 − x2

1x2 + x1 + x2

Figure 6: Vector Field associated to the system
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Action III

Let us apply an action g on f, for example a symmetry around the vertical

axis. The matrix associated to g is G =

(
1 0
0 −1

)

Figure 7: g • f
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Action IV

Another transformation can be reshaping the circle into an ellipse. It is

done with h and its associated matrix is H =

(
2 0
0 1

)

Figure 8: h • f
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Action V

It is possible to compose actions to create a third one

Figure 9: (g ◦ h) • f
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Stabilisers I

Definition
A transformation g is a stabiliser of f if g • f = f, i.e., if it satisfies the
partial differential equation(

dg
dx
◦ g−1

)
∗
(
f ◦ g−1) = f (2)
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Stabilisers II

Example of stabiliser: A rotation of π
4 of our vector field f

(a) f (b) r • f

Figure 10: Vector field after a rotation of π
4

Our vector field is invariant with rotations.
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Stabilisers III

stabiliser: transformation with an action that preserves a vector field

symmetry : change of variables that preserves the equation form

→ transformation g is a stabiliser =⇒ g ∈ Sym(f)
→ g1 ◦ g2 ∈ Sym(f)
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Stabilisers IV

Figure 11: Example of stabiliser on the torus
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Implementation

3 steps:
finding a stabiliser according to the symmetries of our system
calculate a reference trajectory using a guaranteed integration tool
apply transformation with our particular parameters using the stabiliser
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Example 1: Circle with attractive point I

Our system follows the given equations:

{
ẋ1 = −x3

1 − x1x
2
2 + x1 − x2

ẋ2 = −x3
2 − x2

1x2 + x1 + x2

This gives us the following vector field shown below

Figure 12: Example 1 vector field
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Example 1: Circle with attractive point II

We calculate a reference trajectory with the initial condition a0 =

(
0
1
2

)
over 10s

Figure 13: Example 1 Reference trajectory
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Example 1: Circle with attractive point III

Stabilisers satisfy the equation g • f = f
Rotation : g1 : x→ R(p1 ) ∗ x
Symmetry with respect to the unit circle
g2 : x→ 1√

p2+(x12+x22)(1−p2)
∗ x

A group of stabilisers given by gp = g2 ◦ g1 with p =

(
p1
p2

)
exists.
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Example 1: Circle with attractive point IV

For our example the transformation to go from the reference trajectory to
the one with our initial condition is:

x(t) = gh(x0) ◦ a(t)

x(t) =

√
3
(
x1(0),−x2(0)
x2(0), x1(0)

)(
a1(t)
a2(t)

)
√

1− n2(x0) + n2(a(t))(4n2(x0)− 1)
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Example 1: Circle with attractive point V

We now want to compare the performances for a non degenerate box, for
instance

[x0] =

[
[2.4, 2.6]
[−0.1, 0.1]

]

(c) CAPD (d) DynIbex (e) Lie Symmetries

Figure 14: Integration comparison
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Example 2: trajectory without attractor I

In our second example, the system follows the given equations:
ẋ1 = cos(x3)

ẋ2 = sin(x3)

ẋ3 = sin(0.4 ∗ x4)

ẋ4 = 1
We will use as initial condition for our reference the point a0 = (0, 0, 0, 0)

(a) CAPD (b) DynIbex

Figure 15: Reference trajectory
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Example 2: trajectory without attractor II

Case 1

Initial box: [x0] =


[−0.5, 0.5]
[−0.5, 0.5]

[0, 0]
[0, 0]



(a) CAPD (b) Lie Group (c) DynIbex

Figure 16: Example 2 Experiment 1 results
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Example 2: trajectory without attractor III

Case 2

Initial box: [x0] =


[0, 0]
[0, 0]

[−π
2 ,

π
2 ]

[0, 0]



(a) CAPD (b) Lie Group (c) DynIbex

Figure 17: Example 2 Experiment 2 results
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Limits

As powerful as it can be this method is still limited:
1 There may be no symmetries for a problem
2 In case the symmetries exist, it is not always easy to find the

associated transformation
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Conclusion

During this session we presented a novel approach for guaranteed
integration using symmetries in Lie groups. This new method based on
transformations from a reference trajectory allows us to save computational
time and memory. It is robust when the problem present an attractor and is
particularly able to face cases with uncertainties on multidimensional
problems in case symmetries exist
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Thank you for your attention
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Appendices

Definition
A diffeomorphism is an isomorphism from a smooth manifold to another. It
is invertible, smooth and its inverse is also smooth
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Example 1: Circle with attractive point TABLE

CAPD DynIbex Lie Symmetries
computing time
for reference

140ms 7310ms

final box for refer-
ence curve

[
[−0.849,−0.839]
[−0.544,−0.527]

] [
[−0.841,−0.837]
[−0.546,−0.54]

]
computing time
for larger box

116ms 16309ms 140ms

last step com-
puted

1.856s 1.4241s 10s

Table 1: Example 1 comparisons
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Example 2: trajectory without attractor TABLE

CAPD DynIbex Lie Symmetries
computing time
for 1st experiment

40ms 9582ms 40ms

final box for 1st
experiment

[
[3.586, 4.601]
[−0.674, 0.397]

] [
[3.535, 4.655]
[−0.660, 0.453]

] [
[3.584,−4.602]
[−0.673, 0.397]

]
computing time
2nd experiment

37ms 11893ms 41ms

final box for 2nd
experiment

[
[−74.622, 82.717]
[−79.703, 79.202]

] [
[−28.153, 31.8]
[−37.046, 36.943]

] [
[−0.178, 4.283]
[−4.283, 4.102]

]

Table 2: Example 2 results
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Tube with particles
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Set Inversion
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